

http://www.RinkyDinkElectronics.com/ (C)2014 Rinky-Dink Electronics, Henning Karlsen

UTFT_Buttons

Add-on Library for UTFT: Buttons

Manual

Library Manual: UTFT_Buttons Page 1

Introduction:
This library is an add-on to UTFT and will not work on its own.
This add-on library also requires the UTouch library.

This library adds simple but easy to use buttons to extend the use of the UTFT and UTouch
libraries.

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

IMPORTANT:
The library defaults to a maximum of 20 simultaneous buttons.

This number can be adjusted according to your needs by changing the number on the line:
 #define MAX_BUTTONS 20
In the UTFT_Buttons.h file.

You should note that every possible button will reserve a small amount of RAM, 13-15 bytes
depending on what development board you are using, whether it is used or not so you should not
increase the number beyond what you actually need.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: UTFT_Buttons Page 2

DEFINED LITERALS:

Status flags

BUTTON_DISABLED:
BUTTON_SYMBOL:

BUTTON_SYMBOL_REP_3X:
BUTTON_BITMAP:

BUTTON_NO_BORDER:
BUTTON_UNUSED:

 0x0001
0x0002
0x0004
0x0008 (Should not be used manually)
0x0010 (Only valid for bitmap buttons)
0x8000 (Should not be used manually)

INCLUDED FONTS:

Dingbats1_XL

<space> ! ” # $ % & ’ () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~

Library Manual: UTFT_Buttons Page 3

FUNCTIONS:

UTFT_Buttons(UTFT, UTouch);
The main class constructor.

Parameters: UTFT : A reference to an already created UTFT object

UTouch: A reference to an already created UTouch object

Usage: UTFT_Buttons myButtons(&myGLCD, &myTouch); // Start an instance of the UTFT_Buttons class

Notes: Remember the ‘&’ in front of the object names

addButton(x, y, width, height, label[, flags]);
Add a new text or symbol button.

Parameters: X : x-coordinate for the upper left corner of the button

y : y-coordinate for the upper left corner of the button
width : width of the button in pixels
height: height of the button in pixels
label : button text or character for symbol
flags : <optional>
 Can use any combination of BUTTON_DISABLED, BUTTON_SYMBOL and BUTTON_SYMBOL_REP_3X.
 Use | to combine. Default is <none>.

Returns: (INT) buttonID, -1 if no button could be added

Usage: int but1 = myButtons.addButton(10, 20, 300, 30, "Button 1"); // add a new button “Button 1”

Notes: Buttons will not be drawn on the screen until drawButton() or drawButtons() is called.

addButton(x, y, width, height, data[, flags]);
Add a new bitmap button.

Parameters: X : x-coordinate for the upper left corner of the button

y : y-coordinate for the upper left corner of the button
width : width of the bitmap in pixels
height: height of the bitmap in pixels
data : array containing the bitmap-data
flags : <optional>
 Can use any combination of BUTTON_DISABLED or BUTTON_NO_BORDER.
 Use | to combine. Default is <none>.

Returns: (INT) buttonID, -1 if no button could be added

Usage: int but1 = myButtons.addButton(10, 20, 300, 30, bitmap); // add a new bitmap button

Notes: Buttons will not be drawn on the screen until drawButton() or drawButtons() is called.
You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” supplied with UTFT to
convert pictures into compatible arrays. The online-tool can be found on my website.

drawButtons();
Draw all currently added buttons on the screen.

Parameters: None

Usage: myButtons.drawButtons(); // Draw all buttons

drawButton(buttonID);
Draw a single button on the screen.

Parameters: buttonID: ID of the button to draw

Usage: myButtons.drawButton(but1); // Draw button with buttonID but1

enableButton(buttonID[, redraw]);
Set button state to enabled/clickable.

Parameters: buttonID: ID of the button to enable

redraw : <optional>
 true : redraw button immediately
 false: do not redraw button yet (Default)

Usage: myButtons.enableButton(but1, true); // Enable button with buttonID but1 and redraw it

disableButton(buttonID[, redraw]);
Set button state to disabled/unclickable.

Parameters: buttonID: ID of the button to disable

redraw : <optional>
 true : redraw button immediately
 false: do not redraw button yet (Default)

Usage: myButtons.disableButton(but1); // Disable button with buttonID but1 but do not redraw it

Library Manual: UTFT_Buttons Page 4

buttonEnabled(buttonID);
Check the enabled/disabled status of a button.

Parameters: buttonID: ID of the button to disable

Returns: (BOOLEAN) true if button is enabled, otherwise false

Usage: boolean state = myButtons.buttonEnabled(but1); // Check if the button with ButtonID but1 is enabled

relabelButton(buttonID, label[, redraw]);
Relabel a button.

Parameters: buttonID: ID of the button to enable

label : new button text or character for symbol
redraw : <optional>
 true : redraw button immediately
 false: do not redraw button yet (Default)

Usage: myButtons.relabelButton(but1, “New Label”); // Relabel button with buttonID but1 but do not redraw

deleteButton(buttonID);
Delete a button.

Parameters: buttonID: ID of the button to delete

Usage: myButtons.deleteButton(but1); // Delete button with buttonID but1

Notes: Already drawn buttons will not be deleted from the screen, but they will no longer be detected by
calling checkButtons()

deleteAllButtons();
Delete all current buttons.

Parameters: None

Usage: myButtons.deleteAllButtons(); // Delete all buttons

Notes: Already drawn buttons will not be deleted from the screen, but they will no longer be detected by
calling checkButtons()

checkButtons();
Check if any button is being pressed.

Parameters: None

Returns: (INT) buttonID of pressed button, -1 if no button is pressed

Usage: int pressed = myButtons.checkButtons(); // Check if any buttons are pressed

setTextFont(fontname);
Select which font to use for button labels.

Parameters: fontname: Name of the array containing the font you wish to use

Usage: myButtons.setTextFont(BigFont); // Select the font called BigFont

Notes: You must declare the font-array as an external or include it in your sketch.

setSymbolFont(fontname);
Select which font to use for button symbols.

Parameters: fontname: Name of the array containing the font you wish to use

Usage: myButtons.setSymbolFont(Dingbats1_XL); // Select the font called Dingbats1_XL

Notes: You must declare the font-array as an external or include it in your sketch.

setButtonColors(text, inactive, border, highlight, background);
Set the colors used to draw the buttons.

Parameters: text : RGB565-encoded color to use for button text and symbols

inactive : RGB565-encoded color to use for button text and symbols on disabled buttons
border : RGB565-encoded color to use for button borders
highlight : RGB565-encoded color to use for button borders when selected
background: RGB565-encoded color to use for button background

Usage: myButton.setButtonColors(VGA_WHITE, VGA_GRAY, VGA_WHITE, VGA_RED, VGA_BLUE); // Set default colors

